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ABSTRACT
A vowel articulation training aid for the deaf has been
developed. This is an improved DSP version of the analog
filter-bank system presented at ICASSP90 [1]. The real-
time signal processing strategy and the mapping of the
continuous feature space to a two-dimensional display
space are described. A combined linear/nonlinear
transformation, in the form of an artificial neural network,
is used to convert cepstral coefficients (0 a 2-D space
suitable for computer displays. A multi-stage artificial
neural network training algorithm has been developed that
yields better performance and reduced training time relative

to conventional training techniques.

INTRODUCTION

Most existing speech training aids for the hearing

impaired suffer from deficiencies such as difficulty in
interpreting the displays, lack of consistency between
displayed parameters and variables required for speech
production, and generally inadequate feedback to the user
for speech correction. We are attempting to eliminate
these weaknesses with a computer-based visual speech
training system, This DSP version is more flexible than a
previously-developed analog filter-bank system and appears
to give beller performance.

The initial signal processing has been optimized to
provide reliable and easy to interpret continuous "phonetic”
visual feedback to the deaf user as a substitute for the lost
auditory feedback. That is, small changes in vowel
production result in small changes in the display variables
and large changes in pronunciation result in large changes
in the display. This "acoustic-to-phonetic" transformation
could be performed through a linear method such as
discriminant analysis, or a nonlinear method such as
Kohonen’s self organizing feature map (2], Our method
utilizes a neural network algorithm with two nonlinear
hidden layers and a linear output layer to convert acoustic
speech features to a continuous-valued phonetic feature
space. A multi-stage training process has been developed
for this algorithm, resulting in a better performing network
and a decrease in training time compared to conventional
training methods.

The focus of this paper is to describe the real-time
signal processing for the training aid, and also on the
transformation of speech variables to a continuous
phonetic feature space. Vowels were chosen for display
in this aid because it has been found that good
competence in vowel production is essential before most
other sounds can be articulated clearly [3]. Additionally,
vowels are primarily characterized by their steady-stale
short-time amplitude spectrum and therefore vowel
displays are relatively easy to implement in a real-time
system,

REAL-TIME SIGNAL PROCESSING
The vowel training aid is implemented on an IBM-
compatible 386 PC equipped with a 40 mHz TMS320C25
DSP board for speech processing. The basic signal
processing algorithm is outlined in Fig, 1.
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Figure 1. Basic signal processing algorithm,




Summarizing briefly, amplified speech is sampled at
12 kHz, high frequency pre-emphasized (1-.95z') and
stored in a 512-point frame. It is then Hamming
windowed, analyzed with a 512-point FFT, and converied
to a log magnitude scale. The resulling spectrum is
nonlinearly scaled in frequency using a Bark warping
function. Cepstral coefficients are computed using a 256-
point inverse FFT. The cepstral coefficients are then
smoothed using a single pole IIR filter and passed through
a neural network and linear transformation, The result is
a x-y coordinate pair in the 2-D phonetic space which is
transferred to the PC for graphical display. Total
processing time per frame is 23.75 ms out of an available
42.67 ms.

ACOUSTIC TO PHONETIC
TRANSFORMATION

The cepstral coefficients, as mentioned above, were
chosen to represent the acoustic speech signal. Although
vowels are generally characterized by the first two or three
formants, formants are difficult to track in real-time.
Previous experiments have also shown that vowel
classification based on cepstral coefficients, which encode
global spectral shape, yields slightly higher recognition
rates (2-5%) than classification from formants [1].

In order to allow a convenient and easy-to-interpret
visual display of vowel information, we transform the
cepstral coefficients to a reduced dimensionality "display"”
space with "target" display positions specified for each
vowel. This procedure is a combination nonlinear/linear
transformation based on a multi-layer feedforward artificial
neural network. A nonlinear transformation occurs from
the inputs to the hidden layers of the network followed by
a linear transformation to the final output space. The
training algorithm developed consists of two "phases."
First a classifier network with a single hidden layer and
sigmoid nonlinearities at both the hidden and output nodes
is trained using backpropagation (a single output node per
category). Next, minimum mean-square error techniques
[4] are used to map the outputs of the classifier network to
specified target positions in the continuous-valued 2-D
display space. The necural network and linear
transformation are then combined to form a composite
neural network with two nonlinear hidden layers and a
linear output layer, The final network is then "fine-tuned"
with further backpropagation training, Experimental results
show that a network with nine to fourteen cepstral
coefficients as input features, and fifteen hidden nodes at
the first layer, exhibits optimal performance. Note that the
second hidden layer, originally trained as a classifier, must
have the same number of nodes as categories. The overall
network could be trained using backpropagation only, but
we have found the multi-stage approach reduces the
training time needed and results in a network with a more
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Figure 2. Performance comparison for the two methods.

accurate mapping to the 2-D output space. The results of
an experiment illustrating this point are illustrated in Fig.
2. Vowel data from eight adult female speakers were
used to train two networks, The first network used only
backpropagation training. The second network was
trained with the two-stage approach. Ten tokens of each
of ten vowel sounds were used for each of the eight
speakers, One-half of the speakers were used to train
each network and the other half used only for testing,
Nine features were used for inputs. Networks were
evaluated by classifying vowel data according to
minimum Euclidean distance from specified target
positions. As seen in Fig. 2, the single stage network
trained to a maximum of 89.8% on the training data and
reached a maximum of 66.5% on the test data, This
compares to the multi-stage method which achieved
95.5% recognition on the training data and tested to
75.3%. Thus the multi-stage approach exceeded the
single-stage by 5.7% on training data and 8.8% on test
data. The figure also shows that the multi-stage approach
trains more rapidly than the single-stage method.

The same experiment was conducted using fourteen
input features, with similar results, The fourteen feature
single-stage network reached a maximum of 93.8% on
training data and 71.8% on test data, The multi-stage
version frained to 95.8% and tested to 76.8%. Thus the
fourteen feature multi-stage network out-performed the
single stage by 2% on training data and 5% on test. It is
hypothesized that this increase in performance of the
multi-stage method is due to its ability to avoid "bad"
local minima encountered by the single-stage approach,

The cluster plots depicted in Figures 3 and 4 also
illustrate the accuracy with which vowel data can be
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Figure 3a. 2-D vowel cluster plot using the single-stage
training method (training data),
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Figure 4a. 2-D vowel cluster plot using the multi-stage
training method (training data).

projected to two-dimensional spaces. The plots were
drawn using the networks obtained from the previous
experiments with nine input features and show the training

and test results for the single stage and multi-stage training

processes. Target positions in the 2-D space were chosen
to approximate vowel centroids in a log F1 versus log F2
plot. Thus the horizontal direction roughly corresponds to
the front-back vowel dimension and the vertical direction
to the low-high vowel dimension. The ellipses were drawn
such that they enclose approximately 50% of the vowel
data for each vowel in the 2-D space. The tilt of the
ellipses are such that the major axis of each ellipse aligns
with the direction of maximum data varation for the
corresponding vowel. The percentage correct (PC) is given
in terms of minimum Euclidean distance to the target
specified for each vowel.

Inspection of the cluster plots shown in Figures 3 and
4 shows that the multi-stage training method is slightly
better than the single stage approach in mapping data to a
2-D display. The smaller ellipses of Fig, 4, compared to
Fig. 3, illustrate that the multi-stage mapping produces
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Figure 3b. 2-D vowel cluster plot using the single-stage
training method (test data).
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Figure 4b. 2-D vowel cluster plot using the multi-stage
training method (test data).
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more tightly clustered data in the 2-D space. This is
especially apparent for vowels such as "ee" (as in heed)
and "ae" (as in had) for both the training and test data.

VOWEL TRAINING AID SYSTEM

Using the signal processing and acoustic to phonetic
transformation to a 2-D "display" space discussed, a
vowel articulation training aid has been developed. The
system first draws ellipses on the computer monitor
illustrating the target region for each vowel. In real-time,
the user attempts to move a filled basketball to a desired
ellipse by correctly pronouncing the corresponding vowel
sound. Figure 5 shows a black and white reproduction of
this display. In the real-time display, ball color, size and
position are all dependent on the acoustic signal. The
size of the ball is proportional to loudness and the color
changes according to the color of the nearest ellipse, The
target region for each vowel is centered at the "ideal"
position for the vowel. The ellipses are drawn in the
same manner as the cluster plots discussed earlier
(Figures 3 and 4) for the training data case.
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Figure 5. Real-time display screen of the vowel training
aid system,

Several additional features are available to enhance the
display and provide numerical evaluation. The ellipses can
be expanded or reduced to adjust the sensitivity of the
system in recognizing vowel sounds. Any combination of
vowels can be selected for display allowing a user to focus
on vowels of interest. Each vowel has a help display,
which draws a face showing correct mouth and tongue
position for that vowel. An evaluation option is also
included which gives an indication of percent correct in
terms of Euclidean distance to the desired vowels ellipse
center. The user can define a percentage as the threshold
for a correct pronunciation, and the system counts the
number of utterances which exceed the threshold. The
main novel feature of this display is, of course, the
continuous feedback it offers. If the user slightly
mispronounces a vowel sound, the ball moves in the
direction of the desired sound but not quite inside the
ellipse. Large mispronunciations not only result in large
deviations from the desired position, but also give an
indication as to what sound the mispronunciation is most
similar, Thus the user can make changes in the vocal tract
and see immediate, continuous feedback on the display.

Additional displays have been implemented that do not
utilize the two-dimensional display mapping algorithm, A
"bargraph” display has been developed which depicts each
vowel sound as a vertical bar. Bar height is controlled by
"correctness" of vowel pronunciation, Ideal pronunciation
of a vowel sound results in the corresponding bar reaching
maximum height and all others staying at zero. This
version uses the same signal processing discussed above
but uses a neural network with one hidden layer and
nonlinear outputs nodes as a vowel classifier. A third
display developed is a "pac-man" style game. The user
moves a "pac-man" around the screen by correct
pronunciation of the vowel sound corresponding to the
desired direction,

EVALUATION RESULTS
The previous version of the display has been
informally tested with hearing-impaired speakers [1].
The present version of the display has been tested with
normally-hearing speakers who have vowel articulation
problems. An adult French-native female worked with a
speech therapist and the training aid concentrating on the
vowel sounds "ae" (as in had) and "ur" (as in heard).
Initially the user was unsuccessful in even imitative
pronunciation. After several sessions on the system and
help from the speech therapist, the user was not only able
to pronounce both vowels imitatively, but spontaneously
in words, with 85% accuracy as judged by the therapist.
The therapist found the system "particularly beneficial
with regard to the visual representation, which allows the
user to discriminate subtle differences in the place and
manner of production between phonemes.” Further
evaluations are now underway with normally hearing

children with vowel articulation problems.

CONCLUSION

A method has been described for converting high-
dimensionality spectral shape representations of speech
spectra to low-dimensionality display representations for
use as a vowel training aid, In addition a multi-stage
training algorithm has been devised that results in faster
more accurate training of a continuous input/output neural
network, This algorithm has many potential applications
outside of the one presented in this paper. The method
could be used for any application that requires a
nonlinear mapping between continuous-valued vector
spaces. Experimental verification of the dimensionality
transformation indicates that vowels can easily be
discriminated in a two-dimensional space. Experiments
utilizing the vowel training aid with hearing-impaired and
normally-hearing speakers indicate that the displays
developed are easy to interpret, and provide useful
information for improving vowel articulation.
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